The Article & Link of IRRICA.COM

Problems with MRP systems PDF Print E-mail
Written by Cecilia Chee, Singapore   
Tuesday, 04 October 2011 15:51

 

 

Problems with MRP systems

The major problem with MRP systems is the integrity of the data. If there are any errors in the inventory data, the bill of materials (commonly referred to as 'BOM') data, or the master production schedule, then the output data will also be incorrect (colloquially, "GIGO": Garbage In, Garbage Out). Data integrity is also affected by inaccurate cycle count adjustments, mistakes in receiving input and shipping output, scrap not reported, waste, damage, box count errors, supplier container count errors,production reporting errors, and system issues. Many of these type of errors can be minimized by implementing pull systems and using bar code scanning. Most vendors in this type of system recommend at least 99% data integrity for the system to give useful results.

Another major problem with MRP systems is the requirement that the user specify how long it will take for a factory to make a product from its component parts (assuming they are all available). Additionally, the system design also assumes that this "lead time" in manufacturing will be the same each time the item is made, without regard to quantity being made, or other items being made simultaneously in the factory.

A manufacturer may have factories in different cities or even countries. It is not good for an MRP system to say that we do not need to order some material, because we have plenty thousands of miles away. The overall ERP system needs to be able to organize inventory and needs by individual factory, and inter-communicate the needs in order to enable each factory to redistribute components, so as to serve the overall enterprise.

This means that other systems in the enterprise need to work properly, both before implementing an MRP system and in the future. For example , systems like variety reduction and engineering , which makes sure that product comes out right first time (without defects), must be in place.

Production may be in progress for some part, whose design gets changed, with customer orders in the system for both the old design, and the new one, concurrently. The overall ERP system needs to have a system of coding parts such that the MRP will correctly calculate needs and tracking for both versions. Parts must be booked into and out of stores more regularly than the MRP calculations take place. Note, these other systems can well be manual systems, but must interface to the MRP. For example, a 'walk around' stock intake done just prior to the MRP calculations can be a practical solution for a small inventory (especially if it is an "open store").

The other major drawback of MRP is that takes no account of capacity in its calculations. This means it will give results that are impossible to implement due to manpower or machine or supplier capacity constraints. However this is largely dealt with by MRP II.

Generally, MRP II refers to a system with integrated financials. An MRP II system can include finite / infinite capacity planning. But, to be considered a true MRP II system must also include financials.

In the MRP II (or MRP2) concept, fluctuations in forecast data are taken into account by including simulation of the master production schedule, thus creating a long-term control. A more general feature of MRP2 is its extension to purchasing, to marketing and to finance (integration of all the function of the company), ERP has been the next step.

Last Updated on Wednesday, 05 October 2011 13:34
 
Under Copyright © 2017 www.irrica.com. All Right Reserved By IRRICA Software Team. IRRICA.com is the Web Site provided in all of Software Engineering Development(SED) and all of Enhanced Business Implementation(EBI) for Enterprise Software Industry World.
For more information, please issued your enquiry at e-mail: office@irrica.com